
Week 12 - Friday

 What did we talk about last time?
 File systems
 Function pointers

Computer Science is no more about computers than
astronomy is about telescopes.

Attributed to Edsger Dijkstra
(But almost certainly not said by him)

 C++ is based on C and easier to use
 You can declare variables anywhere
▪ Not the case in the C89 standard (where all variables had to be declared right

after a block starts), but our gcc is following the C99 standard

 It has function overloading
 Most people think the I/O is cleaner

 The big addition is OOP through classes
 It's an approximate superset of C that includes most C

structures

 gcc used to stand for the GNU C Compiler
 When it became a suite of tools used for things other than C, they

changed the name to the GNU Compiler Collection
 The compiler for C++ is called g++ and is part of gcc, but it may

need to be installed separately
 C++ files have the extensions .cc, .cpp, .cxx, .c++, and .C
 I prefer .cpp, but .cc is also common

g++ thing.cpp –o program

 C has too many ways to do things, but C++ is an order of
magnitude worse

 Syntax is a big mess of overlapping, ambiguous ideas
 Which only got worse in the C++11 standard and beyond, which we aren't

talking about
 C++ tried to be reverse compatible with C, but not strictly true
 It tried to be object-oriented, but not strictly true
 The Standard Template Libraries are hideous compared to the

Java Collection Framework
 At the time, it was the best choice available for OOP, and now

we're stuck with it

 It's not too different from C
 We need different headers for C++ I/O

#include <iostream>

using namespace std;

int main()
{

cout << "Hello, world!" << endl;
return 0;

}

 Output uses the cout object (of type ostream)
 Instead of using formatting strings, cout uses the idea of a

stream, where objects are placed into the stream separated
by the extraction operator <<

 The endl object adds a newline to the stream
 Of course, "\n"works too

int x = 50;

cout << "There are " << x << " ways to leave your lover."
<< endl;

 Basic output is easier
 What about setting the width or precision?
 You need to include the iomanip header
 Put setw(width) in the stream to make the items take up the specified width
 Put setprecision(precision) in the stream to show a certain number of

decimal places
 Put fixed to force it to pad with zeroes when there isn't enough precision

double dollars = 2.0;
cout << "Give me $" << setw(10) << fixed << setprecision(2)
<< dollars << setw(0) << "!" << endl;

// printf equivalent
printf("Give me $%10.2f!\n", dollars);

 Input uses the cin object (of type istream)
 cin also uses the idea of a stream, where items are read from

the stream and separated by the insertion operator >>
 It reads items using whitespace as the separator, just like
scanf()

int x = 0;
int y = 0;
int z = 0;
cout << "Enter the x, y, and z values: ";
cin >> x >> y >> z;

 Like Java, C++ has a class for holding strings, which makes life
much easier
 It's called string (with a lower case 's')

 You must include <string> to use it
 Unlike String in Java, string is mutable
 You can use array-style indexing to get and set individual characters

string a = "Can I kick it?";
string b = "Yes, you can!";
string c = a + " " + b;
c[0] = 'D';
c[1] = 'i';
c[2] = 'd';
cout << c << endl; // prints "Did I kick it? Yes, you can!"

 Java uses packages to keep different classes with the same name straight
 C++ uses namespaces
 The standard library includes I/O (<iostream>), the string class

(<string>), STL containers (<vector>, <list>, <deque>, and
others)

 If you use these in your program, put the following after your includes

 The alternative is to specify the namespace by putting the it followed by
two colons before the class name

using namespace std;

std::string name = "Ghostface Killah";

 Regular C++ functions are very similar to functions in C
 A big difference is that prototypes are no longer optional if

you want to call the function before it's defined
 Unlike C, function overloading is allowed:
int max(int a, int b)
{

return a > b ? a : b;
}

int max(int a, int b, int c)
{

return max(a, max(b, c));
}

 In C, all functions are pass by value
 If you want to change an argument, you have to pass a pointer to the value

 In C++, you can specify that a parameter is pass by reference
 Changes to it are seen on the outside
 You do this by putting an ampersand (&) before the variable name in the header

void swap(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

 Pass by reference is a useful tool
 You don't have to pass nearly as many pointers
 If you want to change a pointer, you can pass it by reference

instead of passing a pointer to a pointer
 It does allow more mistakes
 Leave off the ampersand and your function does nothing
 Change things you didn't intend to change

 You cannot pass a literal by reference

swap(3, 9); // Doesn't compile

 C++ also allows you to specify default values for function parameters
 If you call a function and leave off those parameters, the default values will be

used
 Default parameters are only allowed for the rightmost grouping of parameters

void build(int width = 2, int height = 4)
{

cout << "We built this house with " << width
<< " by " << height << "s.";

}

build(); //We built this house with 2 by 4s.
build(3); //We built this house with 3 by 4s.
build(6, 8); //We built this house with 6 by 8s.

 Let's write a complete C++ program that reads in:
 A string
 An integer

 Then, it prints out the string however many times the
integer specified

 When you want to dynamically allocate memory in C++, you
use new (instead of malloc())
 No cast needed, no matter the compiler
 It "feels" a lot like Java

int* value = new int(); // Make a single int
int* array = new int[100]; // Array of ints
Wombat* wombat = new Wombat(); // Make a Wombat
// Make 100 Wombats with the default constructor
Wombat* zoo = new Wombat[100];

 When you want to free dynamically allocated memory in C++,
use delete (instead of free())
 If an array was allocated, you have to use delete[]

int* value = new int();
delete value;

Wombat* wombat = new Wombat();
delete wombat;

Wombat* zoo = new Wombat[100];
delete[] zoo; // Array delete needed

 You can compile C code
with C++
 Weird things can happen,

but we aren't going into
those subtle issues

 However, you now know
and love the standard C
libraries

 You can use them in C++
too

 You just have to include
different header files

C Library
Header

C++
Equivalent Purpose

ctype.h cctype Character manipulation

limits.h climits Constants for integer
limits

math.h cmath Math functions

stdio.h cstdio C I/O functions

stdlib.h cstdlib Random values,
conversion, allocation

string.h cstring Null-terminated string
manipulation

time.h ctime Time functions

 A struct in C++ is treated like a class where all the members
are public

 You can even put methods in a struct in C++
 Otherwise, it looks pretty similar
 You don't have to use the struct keyword when declaring
struct variables
 Except in cases when it is needed for disambiguation

 Here's a TreeNode struct in C++

 Write a tree insertion with the following signature

struct TreeNode
{

int value;
TreeNode* left;
TreeNode* right;

};

void insert(TreeNode* &root, int data);

 OOP in C++
 C++ madness
 Templates in C++

 Start working on Project 6

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	C++
	Overview
	Compiling C++
	C++ is kind of an abomination
	Hello, World in C++
	Output in C++
	Formatting output
	Input in C++
	The string class
	The std namespace
	Functions in C++
	Pass by reference
	Pass by reference continued
	Default parameter values
	C++ example
	More C++
	The new keyword
	The delete keyword
	C standard libraries
	Structs in C++
	Example
	Upcoming
	Next time…
	Reminders

