
Week 12 - Friday

 What did we talk about last time?
 File systems
 Function pointers

Computer Science is no more about computers than
astronomy is about telescopes.

Attributed to Edsger Dijkstra
(But almost certainly not said by him)

 C++ is based on C and easier to use
 You can declare variables anywhere
▪ Not the case in the C89 standard (where all variables had to be declared right

after a block starts), but our gcc is following the C99 standard

 It has function overloading
 Most people think the I/O is cleaner

 The big addition is OOP through classes
 It's an approximate superset of C that includes most C

structures

 gcc used to stand for the GNU C Compiler
 When it became a suite of tools used for things other than C, they

changed the name to the GNU Compiler Collection
 The compiler for C++ is called g++ and is part of gcc, but it may

need to be installed separately
 C++ files have the extensions .cc, .cpp, .cxx, .c++, and .C
 I prefer .cpp, but .cc is also common

g++ thing.cpp –o program

 C has too many ways to do things, but C++ is an order of
magnitude worse

 Syntax is a big mess of overlapping, ambiguous ideas
 Which only got worse in the C++11 standard and beyond, which we aren't

talking about
 C++ tried to be reverse compatible with C, but not strictly true
 It tried to be object-oriented, but not strictly true
 The Standard Template Libraries are hideous compared to the

Java Collection Framework
 At the time, it was the best choice available for OOP, and now

we're stuck with it

 It's not too different from C
 We need different headers for C++ I/O

#include <iostream>

using namespace std;

int main()
{

cout << "Hello, world!" << endl;
return 0;

}

 Output uses the cout object (of type ostream)
 Instead of using formatting strings, cout uses the idea of a

stream, where objects are placed into the stream separated
by the extraction operator <<

 The endl object adds a newline to the stream
 Of course, "\n"works too

int x = 50;

cout << "There are " << x << " ways to leave your lover."
<< endl;

 Basic output is easier
 What about setting the width or precision?
 You need to include the iomanip header
 Put setw(width) in the stream to make the items take up the specified width
 Put setprecision(precision) in the stream to show a certain number of

decimal places
 Put fixed to force it to pad with zeroes when there isn't enough precision

double dollars = 2.0;
cout << "Give me $" << setw(10) << fixed << setprecision(2)
<< dollars << setw(0) << "!" << endl;

// printf equivalent
printf("Give me $%10.2f!\n", dollars);

 Input uses the cin object (of type istream)
 cin also uses the idea of a stream, where items are read from

the stream and separated by the insertion operator >>
 It reads items using whitespace as the separator, just like
scanf()

int x = 0;
int y = 0;
int z = 0;
cout << "Enter the x, y, and z values: ";
cin >> x >> y >> z;

 Like Java, C++ has a class for holding strings, which makes life
much easier
 It's called string (with a lower case 's')

 You must include <string> to use it
 Unlike String in Java, string is mutable
 You can use array-style indexing to get and set individual characters

string a = "Can I kick it?";
string b = "Yes, you can!";
string c = a + " " + b;
c[0] = 'D';
c[1] = 'i';
c[2] = 'd';
cout << c << endl; // prints "Did I kick it? Yes, you can!"

 Java uses packages to keep different classes with the same name straight
 C++ uses namespaces
 The standard library includes I/O (<iostream>), the string class

(<string>), STL containers (<vector>, <list>, <deque>, and
others)

 If you use these in your program, put the following after your includes

 The alternative is to specify the namespace by putting the it followed by
two colons before the class name

using namespace std;

std::string name = "Ghostface Killah";

 Regular C++ functions are very similar to functions in C
 A big difference is that prototypes are no longer optional if

you want to call the function before it's defined
 Unlike C, function overloading is allowed:
int max(int a, int b)
{

return a > b ? a : b;
}

int max(int a, int b, int c)
{

return max(a, max(b, c));
}

 In C, all functions are pass by value
 If you want to change an argument, you have to pass a pointer to the value

 In C++, you can specify that a parameter is pass by reference
 Changes to it are seen on the outside
 You do this by putting an ampersand (&) before the variable name in the header

void swap(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

 Pass by reference is a useful tool
 You don't have to pass nearly as many pointers
 If you want to change a pointer, you can pass it by reference

instead of passing a pointer to a pointer
 It does allow more mistakes
 Leave off the ampersand and your function does nothing
 Change things you didn't intend to change

 You cannot pass a literal by reference

swap(3, 9); // Doesn't compile

 C++ also allows you to specify default values for function parameters
 If you call a function and leave off those parameters, the default values will be

used
 Default parameters are only allowed for the rightmost grouping of parameters

void build(int width = 2, int height = 4)
{

cout << "We built this house with " << width
<< " by " << height << "s.";

}

build(); //We built this house with 2 by 4s.
build(3); //We built this house with 3 by 4s.
build(6, 8); //We built this house with 6 by 8s.

 Let's write a complete C++ program that reads in:
 A string
 An integer

 Then, it prints out the string however many times the
integer specified

 When you want to dynamically allocate memory in C++, you
use new (instead of malloc())
 No cast needed, no matter the compiler
 It "feels" a lot like Java

int* value = new int(); // Make a single int
int* array = new int[100]; // Array of ints
Wombat* wombat = new Wombat(); // Make a Wombat
// Make 100 Wombats with the default constructor
Wombat* zoo = new Wombat[100];

 When you want to free dynamically allocated memory in C++,
use delete (instead of free())
 If an array was allocated, you have to use delete[]

int* value = new int();
delete value;

Wombat* wombat = new Wombat();
delete wombat;

Wombat* zoo = new Wombat[100];
delete[] zoo; // Array delete needed

 You can compile C code
with C++
 Weird things can happen,

but we aren't going into
those subtle issues

 However, you now know
and love the standard C
libraries

 You can use them in C++
too

 You just have to include
different header files

C Library
Header

C++
Equivalent Purpose

ctype.h cctype Character manipulation

limits.h climits Constants for integer
limits

math.h cmath Math functions

stdio.h cstdio C I/O functions

stdlib.h cstdlib Random values,
conversion, allocation

string.h cstring Null-terminated string
manipulation

time.h ctime Time functions

 A struct in C++ is treated like a class where all the members
are public

 You can even put methods in a struct in C++
 Otherwise, it looks pretty similar
 You don't have to use the struct keyword when declaring
struct variables
 Except in cases when it is needed for disambiguation

 Here's a TreeNode struct in C++

 Write a tree insertion with the following signature

struct TreeNode
{

int value;
TreeNode* left;
TreeNode* right;

};

void insert(TreeNode* &root, int data);

 OOP in C++
 C++ madness
 Templates in C++

 Start working on Project 6

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	C++
	Overview
	Compiling C++
	C++ is kind of an abomination
	Hello, World in C++
	Output in C++
	Formatting output
	Input in C++
	The string class
	The std namespace
	Functions in C++
	Pass by reference
	Pass by reference continued
	Default parameter values
	C++ example
	More C++
	The new keyword
	The delete keyword
	C standard libraries
	Structs in C++
	Example
	Upcoming
	Next time…
	Reminders

